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Abstract-Numerical analysis of local similarity solutions of laminar, free convective flow over a vertical 
plate with uniform wall temperature and surface heat flux cases in non-Newtonian power law fluids is 
considered. The governing boundary tayer equations along with the boundary conditions are first cast into 
a dimensionless form by a p~ud~similarity variable transfo~ation and the resulting system of equations 
is then solved by a finite difference method in conjunction with the cubic sphne interpolation. Results are 
obtained for the cases of modified Prandtl numbers. based on the local value of X. of 1,10.100, and 1000 
over a range of values of the fluid flow index from 0.5 to 1.5. Representative l&al Nusselt number and 
average Nusselt number as well as velocity and temperature profiles are presented. Comparisons with 

earlier works are also made for large modified Prandtl numbers. 

INTRODUCTION 

DUE TO the importance of applications of non-New- 
tonian fluids in industries processing molten plastics, 
polymers, etc., considerable efforts have been con- 
ducted to unde~tand the behaviour of non-New- 
tonian fluids. Heat transfer by free convection along 
a vertical plate has been analysed rather extensively 
in power law fluids. Acrivos [l] was the first to study 
the external laminar boundary layer equation using 
an asymptotic method to obtain the solutions which 
are simply appropriate to large modified Prandtl 
numbers. Subsequently, many works [2-121, includ- 
ing integral methods, experimental methods, and 
numerical methods, were also presented to yield the 
solutions of a vertical plate with uniform wall tem- 
perature and uniform surface heat fiux conditions. 
Wang and Kleinstreuer 1131 employed the Box 
method to solve a system of non-similar equations 
of a vertical plate immersed in power law fluids. 
However, only the isothermal cases of n = 0.891 
and 0.927 were presented. Lin [14] further proposed 
both the B-spline collocation method and the 
cubic spline cohocation method to deal with the same 
problem, including both surface conditions. More 
recently, Shenoy and Mashelkar [ISI and Irvine and 
Kami [16] made excellent reviews on the subject of 
convective heat transfer in non-Newtonian fluids. 

In the present work the free laminar convective 
heat transfer from a verticai plate with uniform wall 

temperature and surface heat flux to non-Newtonian 
power law fluids is reconsidered. A new appropriate 
pseudo-similarity variable transformation is proposed 
and the resulting transformed equations along with 
boundary conditions are very compact and simple. 
Numericaf solutions are carried out for the trans- 
formed equations by an effective finite difference 
method together with the cubic spline interpolation 
scheme [17]. 

Numerical results of interest, such as the local and 
average Nusselt numbers, velocity distributions, and 
temperature dist~butions, are presented for a range 
of modified Prandtl numbers 1 6 Pr, G 2000 covering 

the fluid flow indices in the range of 0.5 f n c 1.5. 

ANALYSIS 

Consider a verticai flat plate situated in a quiescent 
bulk of non-Newtonian power law fluids with con- 
stant temperature T,. The plate is prescribed with 
the uniform surface temperature (UST) or uniform 
surface heat flux (UHF). By employing the boundary 
layer model, Boussinesq approximations and the 
power iaw model for non-Newtonian fluids, the con- 
vective, iaminar and steady conservation equations 
can be written as 
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NOMENCLATURE 

f dimensionless stream function Greek symbols 

9 gravitational acceleration thermal diffusivity 
h local heat transfer coefficient ; coefficient of thermal expansion of fluid 
K fluid consistency index for power law 6 velocity boundary layer thickness 

fluid 8T thermal boundary layer thickness 
k thermal conductivity pseudo-similarity variable 
f. reference length ;I dimensionless temperature 

Na, local Nusselt number P density of fluid 
XQ average Nusselt number $ stream function. 
n flow index for power law fluids 

Pr, modified Prandtl number for UST case 

PC modified Prandtl number for UHF case 
Subscripts 

wall heat flux 
x local value in the x-direction 

4W 
Ra, modified Rayleigh number for UST case 

W wall condition 

Ra.? modified Rayleigh number for UHF case 
co ambient condition. 

T fluid temperature 
IA streamwise velocity Superscripts 
V transverse velocity , derivative, d/dq 
X streamwise coordinate * uniform surface case 

Y transverse coordinate. - average value. 

i?T dT d2T 
uz+uay=zp. (3) 

The associated boundary conditions are 
. 

y=o; u=v=O, T= T, or -kg=q, 
aY 

y-*00; u-0, T-, T, 

x=0; u=O, T= T,. (4) 

First, using the scale analysis technique analogous to 
Newtonian fluids [18] in boundary layer equations 
(l)-(3), the thermal boundary layer thickness 6,(x) is 
written as 

I 

x/Ra~JIC3”+ 1) for UST case 
W) = x,&: 11(3n+ 2) for UHF case. (9 

Next, a pseudo-similarity variable q, a dimensionless 
stream function f(q), and a dimensionless tempera- 
ture f)(q) are expressed respectively as 

tl = Y/&(X), Art) = wY)wlMx)) (6) 

and 

T-T, 
for UST case 

WI) = 
2-,-T, 

T-T, 
(7) 

q,M.W 
for UHF case 

where the stream function defined by 14 = @lay and 
v = -all/ax automatically satisfies continuity equa- 
tion (I). 

The governing equations (2) and (3) along with 
boundary conditions (4) can be transformed into the 
following system of equations : 

a{e+[If”l”-‘f”]‘}+bff”+cf’2 = 0 (8) 

e”+bfs’+df’e = 0 (9) 

f(0) =f’(O) = 0, 0(O) = I or g(O) = -I 

f’(co) + 0, 8(co) -+ 0. (IO) 

where the primes denote differentiation with respect 
to q. a, 6, c, and dare expressed respectively as 

a = { 

b$(x)g/3(Tw - T,)/(a2x) for UST case 

WMW(a2xk) for UHF case 

b= l-;ds 

c= -&!5j 

and 

I 0 for UST case 

d= x d& 
- S, z for UHF case. 

For UST case, a = Prz(“+ ‘w”+ I), b = (2n+ l)/ 
(3n+l),c= -@+1)/(3n+l)andd=OandforUHF 
case, a = Pr$(“+4)‘(3n+2), b = 2(n+ 1)/(3n+2), c = 

-(n+2)/(3n+2) and d = -n/(3n+ 2). The modified 
Rayleigh number Ra, (Raz) and the modified Prandtl 
number Pr,t (Pr.3 can be written as : 
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for UST case 

Ra, = pgS(Tw - Tm)++ ‘/VW 

* K z/B+ 1’ 

Pr,v = - - 
0 

x(“- 1)/21n+ 1) 
01 P 

x[gs(T,-T,)]““-‘“*‘“+“; (11) 

for UHF case 

Ra: = pgflqv_rZ(“+ ‘)/(Ka”k) 

1 K 5/(n+4) 

Pr.Z = - - 
0 a P 

XZ(n- wn+4qg/gq,//pn- lMn+4). 

(12) 
The primary interest is the local Nusselt number, 

Nu, = hx/k, which is readily written as 

Nu,/&$(“‘+ ‘) = -O’(O) for UST case (13) 

Nu,/Ra:‘/(‘“+2) = l/0(0) for UHF case (14) 

and the average Nusselt number, %i, = t?L/k, is 

%JRa~tC’“+ ” = 2n+l 3ni-1 [-W(O)] for USTcase 

(15) 

x,/Ra; I/(3a+ 2) 
= s [l/e(O)] for UHF case. 

(16) 

METHOD OF SOLUTION 

The first step in solving the system of coupled, non- 
linear ordinary differential equations (8)-(10) is to 
convert equations (8) and (9) into a system of quasi- 
linear ordinary differential equations 

AJ”‘+A,f))+AJ’+Af+A40 = A5 (17) 

Bo0”+B,e’+B2B+Bf’+BJ= B5 (18) 

where 

A,, = anjf”l”-’ 

A, = +an(n-l)lf”l”-‘f”‘+bf 

A 2 = 2cf 

A,=bf” 

A4 =a 

A5 = an@- l)lf”l”-‘f’” +bf”+cf’* 

B,, = 1 

B, =bf 

B2 = df 

B, = de 

B4 = be 

B5 = bft” +df’e. 

Next, these quasi-linear differential equations (17) 
and (18) along with boundary conditions (10) are then 
cast into finite difference equations with the proper 
use of weighting factors. The resulting system of 
algebraic equations is then solved numerically by the 
Thomas method in conjunction with the cubic spline 
interpolation procedure [17]. This solution method 
has been found to yield rapid convergence and 
numerical results of high accuracy. It is very effective 
in dealing with the stiff equation (8) as the ratio of 
coefficients a/b becomes very large for high values of 
Pr,r. This numerical method shifts automatically from 
the central difference algorithm to the upwind differ- 
ence algorithm, and vice versa. The details of this 
method are omitted here. 

Since the thickness of boundary layer rlL depends 
on the modified Prandtl number Pr,, the accuracy of 
the numerical results is checked by proceeding with 
the test of different mesh size Arl and thickness qE. 
We use Aq= 0.01 and r~, = 20 as Pr, < 10. For large 
values of Pr,(> 100) A9 = 0.1 and qr = 40 are 
adopted. It can be explained that equation (8) will be 
approximated by 

e+[lf”yj-y = 0 (1% 

with f(0) =f’(O) =f”(co) = 0 and the numerical 
solutions are thus independent of Pr,. 

RESULTS AND DISCUSSION 

Free convection problems of non-Newtonian 
power law fluids including analytical and experimen- 
tal results have been analysed since Acrivos [l]. For 
an isothermal vertical plate case, Fig. 1 depicts the 
effects of the modified Prandtl numbers on the local 
Nusselt number results in terms of Nu,/Ra,~O”+ ‘) 
as a function of the fluid flow index n. The integral 
solutions [3,4] are also included in the figure. It can 
be seen from the figure that the local Nusselt num- 
ber increases with increasing modified Prandtl 
numbers for all power law fluids. The local Nusselt 
number also increases monotonously as the value of 
the fluid flow index increases. In addition, for large 
values of Pr,(2 loo), the local Nusselt number 
reaches a stationary value for all power law fluids. 
That is, as Pr, 2 100, equation (8) is approximated 
to equation (19) and thus its solution becomes inde- 
pendent of Pr,. From Fig. 1, one can see that the local 
Nusselt number obtained by the integral method [4] 
compares well with that of the present work as n is 
larger than 0.9 and Pr, + co. Whereas, its value is 
higher than that of the present work as n < 0.9. 
Shenoy and Ulbrecht’s result [3] deviates from that of 
the present work for all power law fluids even at 
high values of Pr,. Consequently, in the present study 
consideration of the effects of modified Prandtl num- 
ber defined as a function of x, ranging from 1 to 1000 
is reasonable. 

Representative dimensionless velocity and tem- 
perature profiles for values of n = 0.5, 1.0, and 1.5 
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FIG. I. Local Nusselt numbers in terms of fluid flow index for UST case. 

and Pr, = 1, 10, 100, and 1000 are illustrated, respec- 
tively, in Figs. 2 and 3. One can observe that the 
dimensionless velocity profiles are found to be 
strongly sensitive to the modified Prandtl number and 
the fluid flow index while the dimensionless tem- 
perature profiles are not obviously influenced. As 

1.2 

1.0 

*,0-S 

0.6 

0.4 

0.2 

0.0 

1.0 

0.9 

0.0 

0.7 

8 
0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0 2 4 6 8 10 12 14 16 16 20 

n 

FIG. 2. Velocity profiles for UST case. 
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FIG. 3(a). Temperature profiles of n = 0.5 for UST case. 

mentioned earlier, the ratio of thickness of momentum 
boundary layer and that of thermal boundary layer is 

w pr2:ol+ I) 

6,(x)* .r 

It is obvious from Figs. 2 and 3 that for high values 
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FIG. 3(b). Temperature profiles of n = 1 .O for UST case. 
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FIG. 3(c). Temperature profiles of n = I .5 for UST case. 
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FIG. 4. Local Nusselt numbers in terffis of fluid Row index for UHF case. 

of Pr,, the thinner the thermal boundary layer and numbers as a function of the fluid flow index with a 
the thicker the momentum boundary layer. given value of Pr,. Increasing the value of the modified 

Figure 4 shows the laminar convective heat transfer Prandtl number, the local Nusselt number results in 
from a vertical plate with uniform surface heat flux an increase in Nu,..Ra,*“(3”+2) and reaches a uniform 
to power law fluids. It illustrates the local Nusselt value. The figure also shows that the local Nusselt 
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Table I. Comparisons of average Nusselt number 

(a) For isothermal case, &/R@“+ ‘) 

Shenoy and Kawase and 
n Ulbrecht [3] Ulbrecht [4] Acrivos [I] 

0.5 0.5957 0.6275 0.63 
I.0 0.6775 0.6700 0.67 
1.5 0.7194 0.6960 0.71 

(b) For constant heat flux case, %,/Rat w”+ *) 

Tien [2] 

0.6098 
0.6838 
0.7229 

Present 
work 

0.6105 
0.6701 
0.7012 

Lin [ 141 
Chen and 

n Wollersheim [lo] Pr,’ = 100 Pr: = IO 

Present work 

Pr,’ = 2000 f+: = 100 Pr: = 10 

0.5 0.7480 0.1293 0.7032 0.738 I 0.7336 0.6907 
1.0 0.7896 0.7725 0.7439 0.7883 0.7751 0.7445 
1.5 0.8205 0.7995 0.7674 0.8213 0.8058 0.7790 

number is insensitive to the fluid flow index and the 
same value of local Nusselt number for all power law 
fluids is found at Pr: -t m. Som and Chen [12] 
proposed a correlation at Pr,’ 

Nu,/Ra:‘/(‘“+*) = 0.63. (21) 

This correlation is verified here. As can be seen from 
Fig. 4 the integral solution obtained by Shenoy [19] 
has a lower value than that of the present work. The 
experimental results [9] are also displayed in this 
figure. 

Representative dimensionless velocity and tem- 
perature profiles for UHF case and for given values 
of Pr,’ and n are illustrated in Figs. 5 and 6, respec- 
tively. Similarly, from the scale analysis 

W) pr*(“+4)/K”+ l)(‘n+ 2)) 

a,(x)- * (22) 

It is evident from Fig. 5 that the higher the value of 
Pr$ and the smaller the value of n, the thickness of 
the momentum boundary layer will become larger. 

Table 1 simultaneously presents the average Nusselt 
numbers of these two surface conditions. The present 
average Nusselt number results are compared with 
those of earlier studies for distinct values of the fluid 
flow index and the modified Prandtl number. As can 
be seen from such a comparison, the agreement is 
found to be very good for high modified Prandtl 
numbers. 

CONCLUSIONS 

A local similarity solution of laminar free con- 
vective heat transfer between a vertical flat plate and 
non-Newtonian power law fluids has been analysed. 
Both the isothermal wall case and the constant wall 
heat flux case have been considered. An appropriate 
coordinate transformation was yielded and an implicit 
finite difference scheme employed to the system of 
problems with the effects of the modified Prandtl num- 

ber ranging from 1 to 2000 and the fluid flow index 
from 0.5 to 1 S. The results show that the local Nusselt 
number increases as the value of modified Prandtl 
number increases while the Nusselt number is less 
sensitive to the fluid flow index. The present results 
can be used to supplement earlier results of non-New- 
tonian power law fluids. 
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SOLUTIONS LOCALEMENT AFFINES DE LA CONVECTION THERMIQUE 
NATURELLE SUR UNE PLAQUE VERTICALE POUR DES FLUIDES NON NEWTONIENS 

A LO1 PUISSANCE 

R&sum&On considere numeriquement les solutions localement affines de la convection thermique lami- 
naire sur un plan vertical a temperature ou ti flux parietal uniforme, dans le cas de fluides non newtoniens 
a loi puissance. Les equations de couche limite et les conditions aux Iimites sont mises sous une forme 
adimensionnelle par une transformation de variable pseudo-affine et le systtme d’equations resultant est 
n%olu par une methode aux differences finies, en relation avec I’interpolation spline cubique. Des rtsultats 
sont obtenus dans le cas des nombres de Prandtl modifies, bases sur la valeur locale de x, egaux a I, 10, 
100 et 1000 et pour un domaine d’indice d’boulement du fluide allant de 0,5 al,S. On prbsente les nombres 
de Nusselt locaux et globaux ainsi que Ies pro& de vitesse et de temp&ature dans des cas typiques. On 

fait aussi la comparaison avec des travaux anttrieurs pour des grands nombres de Prandtl modifies. 

ORTLICHE AHNLIcHKEITSLGSUNGEN FOR DEN WARMEUBERC~ANG DURCH 
FREIE KONVEKTION VON EINER VERTIKALEN PLATTE AN “POWER-LAW”- 

FLUIDE 

Zusammenfaswng-Es wird eine numerische Analyse von iirtlichen Ahnlichkeitsliisungen einer laminaren, 
frei konvektiven Strcimung iiber eine vertikale Platte mit einheitlicher Wandtemperatur und einheitlichem 
WIrmestrom an der ObertlLhe in nicht-Newton’schen “Power-Law”-Fluiden betrachtet. Die Grenz- 
schicht-Gleichungen werden xuerst xusammen mit den Randbedingungen mit Hilfe einer Pseudo-Ahn- 
lichkeitsvariablen-Transformation in eine dimensionslose Form gebracht; anschlieBend wird das resul- 
tierende Gleichungssystem mit einer Finite-Differenxen-Methode in Verbindung mit der kubischen Spline- 
Interpolation gel&t. Ftir die moditixierten Prandtl-Zahlen I, 10, 100 und 1000, basierend auf 6rtlichen 
Werten von x, werden Ergebnisse ermittelt, und xwar Rir Fluid-Striimungs-Kennxahlen xwischen 0,5 und 
1,5. Die reprHsentative iirtliche Nusselt-Zahl und die mittlere Nusselt-Zahl werden ebenso dargestellt wie 
die Geschwindigkeits- und die Temperaturprotile. Weiterhin werden Vergleiche mit frtiheren Arbeiten fiir 

groBe modifixierte Prandtl-Zahlen angestellt. 

JIOKAJIbHbIE ABTOMOJ&JIbHbIE PEIUEHHEI 3A&i9H CBOBO~HOKOHBEKTWBHO~O 
TFXIJIOfIEPEHOCA OT BEPTElKkn bHOR I-IJIACTHHbI K HEHbK)TOHOBCKWM 

Cl-ElIEHHbIM XHAKOCTXM 

Amwmmn--9mzne~o aRami3npywcr nowwn4e an-roMo1IWIbwe peurerraa 3a.na-t~ naxrsrnapnoro 
cao6o~oxom3exrnsnoro rwtemu nan nepnmmmsrog nnaormrog B cnynae HeBbmoHoucuix crene- 

XHxKocTe~ UpH nocT0nHHblx mdmpa~ cnxun H remo~ohf ncrrolte Ha nonepx~omi. CHanana onyx- 

mnmouvie ypaanem norpamiworo cnon mucre c I-paHHWMME ycAOBHltMEIlpliBOAXERK6e!3pa3- 
~epxoit @opMe np~no~oruHnpco6pa30~~~ono~~~a3PTt~n~me~1~1~~rt~a~BHe~ 
pemaemx roHewoqa3Hocnrbm Me'T'OAOM I) KOM6EHBAHB 

IIonyne~pe3ym+7mbf~utywieBMo~@AHpoaameor 

cry6mecxoPcma&foBollsmrepaonnu~1eil. 

wcennp~~HaocHosenor~oro3Ha- 

qeHws 5 paBHor0 1,lQ 10011 1000, B maporokamrana3oHe 3Ha=ferdi mecca -reqeHHa x~~meni 0,s 
1.5.IIpurcra~~rerrbr xaparreprrareno- e IS epeAHee -mcAa Hyccurara, a mxxe upo@um c~opocm 

HTeMmpaTypbl. llpoBeAeHbIcpaBHeHnrcpaHeeony6JuuoBa- pa6omm annclrynaes 6011bum 

3Haned~omrtjwmnporrrposaRHaa ¶HcenrIpaHATna. 


