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Abstract—Numerical analysis of local similarity solutions of laminar, free convective flow over a vertical
plate with uniform wall temperature and surface heat flux cases in non-Newtonian power law fluids is
considered. The governing boundary layer equations along with the boundary conditions are first cast into
a dimensionless form by a pseudo-similarity variable transformation and the resulting system of equations
is then solved by a finite difference method in conjunction with the cubic spline interpolation. Results are
obtained for the cases of modified Prandtl numbers, based on the local value of x, of 1, 10, 100, and 1000
over a range of values of the fluid flow index from 0.5 to 1.5. Representative local Nusselt number and
average Nusselt number as well as velocity and temperature profiles are presented. Comparisons with
earlier works are also made for large modified Prandt! numbers.

INTRODUCTION

DuE TO the importance of applications of non-New-
tonian fluids in industries processing molten plastics,
polymers, etc., considerable efforts have been con-
ducted to understand the behaviour of non-New-
tonian fluids. Heat transfer by free convection along
a vertical plate has been analysed rather extensively
in power law fluids. Acrivos [1) was the first to study
the external laminar boundary layer equation using
an asymptotic method to obtain the solutions which
are simply appropriate to large modified Prandtl
numbers. Subsequently, many works [2-12}, includ-
ing integral methods, experimental methods, and
numerical methods, were also presented to yield the
solutions of a vertical plate with uniform wall tem-
perature and uniform surface heat flux conditions.
Wang and Kleinstreuer {13] employed the Box
method to solve a system of non-similar equations
of a vertical plate immersed in power law fluids.
However, only the isothermal cases of n=(0.891
and 0.927 were presented. Lin [14] further proposed
both the B-spline collocation method and the
cubic spline collocation method to deal with the same
problem, including both surface conditions. More
recently, Shenoy and Mashelkar [15] and Irvine and
Karni {16] made excellent reviews on the subject of
convective heat transfer in non-Newtonian fluids.

In the present work the free laminar convective
heat transfer from a vertical plate with uniform wall
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temperature and surface heat flux to non-Newtonian
power law fluids is reconsidered. A new appropriate
pseudo-similarity variable transformation is proposed
and the resulting transformed equations along with
boundary conditions are very compact and simple.
Numerical solutions are carried out for the trans-
formed equations by an effective finite difference
method together with the cubic spline interpolation
scheme (17].

Numerical results of interest, such as the local and
average Nusselt numbers, velocity distributions, and
temperature distributions, are presented for a range
of modified Prandtl numbers 1 € Pr, < 2000 covering
the fluid flow indices in the range of 0.5 < n < 1.5.

ANALYSIS

Consider a vertical flat plate situated in a quiescent
bulk of non-Newtonian power law fluids with con-
stant temperature T,. The plate is prescribed with
the uniform surface temperature (UST) or uniform
surface heat flux (UHF). By employing the boundary
layer model, Boussinesq approximations and the
power law model for non-Newtonian fluids, the con-
vective, laminar and steady conservation equations
can be written as

du

ox

2
+5=0
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NOMENCLATURE
f dimensionless stream function Greek symbols
g gravitational acceleration a« thermal diffusivity
h local heat transfer coefficient B coefficient of thermal expansion of fluid
K fluid consistency index for power law ] velocity boundary layer thickness
fluid o1 thermal boundary layer thickness
k thermal conductivity n pseudo-similarity variable
L reference length 0 dimensionless temperature
Nu, local Nusselt number P density of fluid
Nu, average Nusselt number W stream function.
n flow index for power law fluids
Pr.  modified Prandtl number for UST case .
Pr* modified Prandtl number for UHF case Subscripts . L
X local value in the x-direction
G wall heat flux -
Ra, modified Rayleigh number for UST case W wall .condmor} .
Ra¥ modified Rayleigh number for UHF case ® ambient condition.
T fluid temperature
u streamwise velocity Superscripts
v transverse velocity § derivative, d/dn
x streamwise coordinate * uniform surface case
¥ transverse coordinate. — average value.

ou  Ou K é||éw" " ou
ua+05=gﬂ(T—Tw)+;5|:5; é_—v:l ?
éT  or  éT
SRR rik ®
The associated boundary conditions are
oT
y=0;, u=v=0,T=T, or —A5=qw
y— 0, u—-0,7T- T]!J
x=0; u=0,T=T,. (4)

First, using the scale analysis technique analogous to
Newtonian fluids {18} in boundary layer equations
(1)=(3), the thermal boundary layer thickness d.(x) is
written as

x/Ral®"+ D for UST case

dr(x) = {x/Ra;“”"” 2 for UHF case. )

Next, a pseudo-similarity variable 5, a dimensionless
stream function f(n), and a dimensionless tempera-
ture 6(n) are expressed respectively as

n=y/ér(x), f(n) =¥(x.p)/(ax/ér(x))  (6)

and
-T.
I=7. for UST case
T,-T,
00n) = T—T M
—————=_ for UHF case
qwéT(x)/k
where the stream function defined by u = éy//dy and
v = —0y/0x automatically satisfies continuity equa-

tion (1).

The governing equations (2) and (3) along with
boundary conditions (4) can be transformed into the
following system of equations:

al0+0f 1 STy +bF +ef P =0 (8)

O +bf0'+df 0 =0 ©)

SO =f©®=0, 80)=1
f(0) >0, 6(c0) 0.

or(0)= —1
(10)

where the primes denote differentiation with respect
to 1. a, b, c, and d are expressed respectively as

04(x)gB(T., ~ T)/(a*x) for UST case
4= 34(x)gByg. /(o xk) for UHF case
x dé;
b=1-3 &
e85y
=775 dx
and
0 for UST case
d= x dor
- 3: e for UHF case.

For UST case, g= PritW0n+b b= (2n+1)/
(B3n+1),c = —(n+1)/(3n+1) and d = 0 and for UHF
case, a= Prro+®i0n+d = 2(n+1)/(3n+2), c=
—(n+2)/(3n+2) and d = ~n/(3n+2). The modified
Rayleigh number Ra, (Ra?) and the modified Prandtl
number Pr, (Pr¥ can be written as:
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Jor UST case
Ra, = pgB(T, —T.)x™*"/(Ka)

1 K 2/(n+ 1)
Pr, = — x(n— 1)/ 2(n+1)
a\p

X [gB(T. —T,))>= W2+ (11)
for UHF case

Ra* = pgPq.x*"* V/(Kak)

1/K S/(n+4)
Pr: —_ & (;> xZ(n— 1)/ (n+4) [gﬂqw/k]J(n— Djn+ 4)'

(12)

The primary interest is the local Nusselt number,
Nu, = hx/k, which is readily written as

Nu,/Ra}C"+V = —g'(0) for USTcase (13)
Nu,/Ra*''®"+D = 1/6(0) for UHF case (14)
and the average Nusselt number, Nu, = AL/k, is
3n+1

N Y3+ 1) '
Nu, [Ra; mrl [—0'(0)] for UST case
(15)
_ 3n+2
*x1/(3n+2) —
Nu,/Ra} ————————2(n+ D [1/6(0)] for UHF case.
(16)

METHOD OF SOLUTION

The first step in solving the system of coupled, non-
linear ordinary differential equations (8)-(10) is to
convert equations (8) and (9) into a system of quasi-
linear ordinary differential equations

A"+ A f"+ Ao f + A f+ A0 = A,
300"+B,0'+329+BJ'+BJ= Bs

(17)
(18)

where
Ag = an|f"|""!
A, = tan(n=DIf"1"f"+bf
A, =2¢f’
Ay =bf"
A,=a
As=an(n=D)|f"|""'f" +bf"+cf"?
By =1
B, =bf
B, =df’
B;=df
B, = b0

By = bf® +df"6.

Next, these quasi-linear differential equations (17)
and (18) along with boundary conditions (10) are then
cast into finite difference equations with the proper
use of weighting factors. The resulting system of
algebraic equations is then solved numerically by the
Thomas method in conjunction with the cubic spline
interpolation procedure [17]. This solution method
has been found to yield rapid convergence and
numerical results of high accuracy. It is very effective
in dealing with the stiff equation (8) as the ratio of
coefficients a/b becomes very large for high values of
Pr.. This numerical method shifts automatically from
the central difference algorithm to the upwind differ-
ence algorithm, and vice versa. The details of this
method are omitted here.

Since the thickness of boundary layer . depends
on the modified Prandtl number Pr,, the accuracy of
the numerical results is checked by proceeding with
the test of different mesh size Ay and thickness 7.
We use An = 0.01 and n,, = 20 as Pr, < 10. For large
values of Pr.(>100), As =0.1 and 5, =40 are
adopted. It can be explained that equation (8) will be
approximated by

O+ ") =0 (19)

with f(0) =f'(0) =f"(o0) =0 and the numerical
solutions are thus independent of Pr,.

RESULTS AND DISCUSSION

Free convection problems of non-Newtonian
power law fluids including analytical and experimen-
tal results have been analysed since Acrivos [1]. For
an isothermal vertical plate case, Fig. 1 depicts the
effects of the modified Prandtl numbers on the local
Nusselt number results in terms of Nu,/Ral¢n+h
as a function of the fluid flow index n. The integral
solutions [3, 4] are also included in the figure. It can
be seen from the figure that the local Nusselt num-
ber increases with increasing modified Prandtl
numbers for all power law fluids. The local Nusselt
number also increases monotonously as the value of
the fluid flow index increases. In addition, for large
values of Pr,(>100), the local Nusselt number
reaches a stationary value for all power law fluids.
That is, as Pr, > 100, equation (8) is approximated
to equation (19) and thus its solution becomes inde-
pendent of Pr,. From Fig. 1, one can see that the local
Nusselt number obtained by the integral method [4]
compares well with that of the present work as n is
larger than 0.9 and Pr, — co. Whereas, its value is
higher than that of the present work as n < 0.9.
Shenoy and Ulbrecht’s result [3] deviates from that of
the present work for all power law fluids even at
high values of Pr,. Consequently, in the present study
consideration of the effects of modified Prandtl num-
ber defined as a function of x, ranging from 1 to 1000
is reasonable.

Representative dimensionless velocity and tem-
perature profiles for values of n =0.5, 1.0, and 1.5
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Fi1G. 1. Local Nusselt numbers in terms of fluid flow index for UST case.

and Pr, =1, 10, 100, and 1000 are illustrated, respec-
tively, in Figs. 2 and 3. One can observe that the
dimensionless velocity profiles are found to be
strongly sensitive to the modified Prandtl number and
the fluid flow index while the dimensionless tem-
perature profiles are not obviously influenced. As
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FIG. 3(a). Temperature profiles of n = 0.5 for UST case.

mentioned earlier, the ratio of thickness of momentum
boundary layer and that of thermal boundary layer is

5(x) 2/(3n+ 1)
PR I

It is obvious from Figs. 2 and 3 that for high values

(20)
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F1G. 3(c). Temperature profiles of n = 1.5 for UST case.
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FI1G. 4. Local Nusselt numbers in terms of fluid flow index for UHF case.

of Pr,, the thinner the thermal boundary layer and numbers as a function of the fluid flow index with a
the thicker the momentum boundary layer. given value of Pr,. Increasing the value of the modified

Figure 4 shows the laminar convective heat transfer  Prandtl number, the local Nusselt number results in
from a vertical plate with uniform surface heat flux  an increase in Nu,/Ra?*"/***? and reaches a uniform
to power law fluids. It illustrates the local Nusselt value. The figure also shows that the local Nusselt

| I T T I | ¥ I ¥
1.2 - 1000 n=0,5 —=-—-

nel.0 ——————

F1G. 6(a). Temperature profiles of n = 0.5 for UHF case. F1G. 6(c). Temperature profiles of n = 1.5 for UHF case.
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Table 1. Comparisons of average Nusselt number

(a) For isothermal case, Nu,/Ra}/G*+"

Shenoy and Kawase and Present
n Ulbrecht [3] Ulbrecht [4] Acrivos (1] Tien [2] work
0.5 0.5957 0.6275 0.63 0.6098 0.6105
1.0 0.6775 0.6700 0.67 0.6838 0.6701
1.5 0.7194 0.6960 0.71 0.7229 0.7012
(b) For constant heat flux case, Nu, /Ra? /O"+d
Lin {14] Present work
Chen and
n  Wollersheim [10] Pr*=100 Prr=10 Prr=2000 Prr=100 Prr=10
0.5 0.7480 0.7293 0.7032 0.7381 0.7336 0.6907
1.0 0.7896 0.7725 0.7439 0.7883 0.7751 0.7445
.5 0.8205 0.7995 0.7674 0.8213 0.8058 0.7790

number is insensitive to the fluid flow index and the
same value of local Nusselt number for all power law
fluids is found at Pr}-» 0. Som and Chen [12]
proposed a correlation at Pr¥

Nu,/Ra*VCn+D = 0.63. @1

This correlation is verified here. As can be seen from
Fig. 4 the integral solution obtained by Shenoy [19}
has a lower value than that of the present work. The
experimental results [9] are also displayed in this
figure.

Representative dimensionless velocity and tem-
perature profiles for UHF case and for given values
of Pr¥ and n are illustrated in Figs. 5 and 6, respec-
tively. Similarly, from the scale analysis

o(x)
or(x)

It is evident from Fig. 5 that the higher the value of
Pr* and the smaller the value of n, the thickness of
the momentum boundary layer will become larger.

Table 1 simultaneously presents the average Nusselt
numbers of these two surface conditions. The present
average Nusselt number results are compared with
those of earlier studies for distinct values of the fluid
flow index and the modified Prandtl number. As can
be seen from such a comparison, the agreement is
found to be very good for high modified Prandt!
numbers.

~ Pr,"‘(""’ 4)/((n+ 1)(3n4+ 2))‘

(22)

CONCLUSIONS

A local similarity solution of laminar free con-
vective heat transfer between a vertical flat plate and
non-Newtonian power law fluids has been analysed.
Both the isothermal wall case and the constant wall
heat flux case have been considered. An appropriate
coordinate transformation was yielded and an implicit
finite difference scheme employed to the system of
problems with the effects of the modified Prandtl num-

ber ranging from 1 to 2000 and the fluid flow index
from 0.5 to 1.5. The results show that the local Nusselt
number increases as the value of modified Prandtl
number increases while the Nusselt number is less
sensitive to the fluid flow index. The present results
can be used to supplement earlier results of non-New-
tonian power law fluids.

REFERENCES

1. A. Acrivos, A theoretical analysis of laminar natural
convection heat transfer to non-Newtonian fluids,
A.LCh.E. J1 6, 584-590 (1960).

2. C. Tien, Laminar natural convection heat transfer from
vertical plate to power law fluid, Appl. Scient. Res. 17,
233-248 (1967).

3. A. V. Shenoy and J. J. Ulbrecht, Temperature profiles
for laminar natural convective flow of dilute polymer
solutions past an isothermal vertical flat plate, Chem.
Engng Commun. 3, 303-324 (1979).

4. Y. Kawase and J. J. Ulbrecht, Approximate solution to
the natural convection heat transfer from a vertical plate,
Int. Commun. Heat Mass Transfer 11, 143-155 (1984).

5. Z. P. Shulman, V. L. Baikov and E. A. Zaltsgendler,
An approach to prediction of free convection in non-
Newtonian fluids, Int. J. Heat Mass Transfer 19, 1003—
1007 (1976).

6. 1. G. Reilly, C. Tien and M. Adelman, Experimental
study of natural convective heat transfer from a vertical
plate in a non-Newtonian fluid, Can. J. Chem. Engng
43, 157-161 (1965).

7. A. F. Emery, H. S. Chi and J. D. Dale, Free convection
through vertical plane layers of non-Newtonian power
law fluids, J. Heat Transfer 93, 164-171 (1971).

8. K. K. Sharma and M. Adelman, Experimental study of
natural convection heat transfer from a vertical plate in
a non-Newtonian fluid, Can. J. Chem. Engng 47, 553—
555 (1969).

9. J. D. Dale and A. F. Emery, The free convection of heat
from a vertical plate to several non-Newtonian
pseudoplastic fluids, J. Heat Transfer 94, 64-72 (1972).

. T. V. W. Chen and D. E. Wollersheim, Free convection
at a vertical plate with uniform flux condition in non-
Newtonian power law fluids, J. Heat Transfer 95, 123
124 (1973).



11

12.

14.

Free convective heat transfer from a vertical plate

J. L. S. Chen and A. Boehm, Natural convection of
power law fluids from a vertical plate with uniform
surface heat flux, Heat Transfer 1974, Proc. 5th Int.
Heat Transfer Conf., Tokyo, Japan, Vol. 111, pp. 39-43
(1974).

A. Som and J. L. S. Chen, Free convection of non-
Newtonian fluids over non-isothermal two-dimensional
bodies, Int. J. Heat Mass Transfer 27, 791-794 (1984).

. T. Y. Wang and C. Kleinstreuer, Free convection

heat transfer between a permeable vertical wall and a
power-law fluid, Numer. Heat Transfer 12, 367-379
(1987).

K. L. Lin, Problems of non-Newtonian fluids by spline
collocation method, Master’s thesis, National Cheng
Kung University, Tainan, Taiwan (1986).

15.

125

A.V.Shenoy and R. A. Mashelkar, Thermal convection
in non-Newtonian fluids. In Advances in Heat Transfer
(Bdited by J. P. Hartnett and T. F. Irvine, Jr.), Vol. 15,
pp. 143-225. Academic Press, New York (1982).

. T. F. Irvine, Jr. and J. Karni, Non-Newtonian fluid

flow and heat transfer. In Handbook of Single-phase
Convective Heat Transfer (Edited by S. Kakac, R. K.
Shah and W. Aung), Chap. 20. Wiley, New York (1987).

. S. L. Lee, T. S. Chen and B. F. Armaly, New finite

difference solution methods for wave instability prob-
lems, Numer. Heat Transfer 10, 1-18 (1986).

. A. Bejan, Convective Heat Transfer, Chap. 4. Wiley,

New York (1984).

. A. V. Shenoy, Ph.D. Thesis, University of Salford, U.K.

(1977).

SOLUTIONS LOCALEMENT AFFINES DE LA CONVECTION THERMIQUE
NATURELLE SUR UNE PLAQUE VERTICALE POUR DES FLUIDES NON NEWTONIENS
A LOI PUISSANCE

Résumé—On considére numériquement les solutions localement affines de la convection thermique lami-
naire sur un plan vertical 4 température ou 4 flux pariétal uniforme, dans le cas de fluides non newtoniens
4 loi puissance. Les equations de couche limite et les conditions aux limites sont mises sous une forme
adimensionnelle par une transformation de variable pseudo-affine et le systéme d’équations resultant est
résolu par une méthode aux différences finies, en relation avec I'interpolation spline cubique. Des résultats
sont obtenus dans le cas des nombres de Prandtl modifiés, basés sur la valeur locale de x, égaux a 1, 10,
100 et 1000 et pour un domaine d’indice d’écoulement du fluide allant de 0,5 41,5. On présente les nombres
de Nusselt locaux et globaux ainsi que les profils de vitesse et de température dans des cas typiques. On
fait aussi la comparaison avec des travaux antérieurs pour des grands nombres de Prandtl modifiés.

ORTLICHE AHNLICHKEITSLOSUNGEN FUR DEN WARMEUBERGANG DURCH
FREIE KONVEKTION VON EINER VERTIKALEN PLATTE AN “POWER-LAW”-

FLUIDE

Zusammenfassung—Es wird eine numerische Analyse von értlichen Ahnlichkeitslésungen einer laminaren,
frei konvektiven Stromung iiber eine vertikale Platte mit einheitlicher Wandtemperatur und einheitlichem
Wirmestrom an der Oberfliche in nicht-Newton’schen “Power-Law”-Fluiden betrachtet. Die Grenz-
schicht-Gleichungen werden zuerst zusammen mit den Randbedingungen mit Hilfe einer Pseudo-Ahn-
lichkeitsvariablen-Transformation in eine dimensionslose Form gebracht; anschlieBend wird das resul-
tierende Gleichungssystem mit ciner Finite-Differenzen-Methode in Verbindung mit der kubischen Spline-
Interpolation gelost. Fiir die modifizierten Prandtl-Zahlen 1, 10, 100 und 1000, basierend auf ortlichen
Werten von x, werden Ergebnisse ermittelt, und zwar fir Fluid-Strémungs-Kennzahlen zwischen 0,5 und
1,5. Die représentative ortliche Nusselt-Zahl und die mittlere Nusselt-Zahl werden ebenso dargestellt wie
die Geschwindigkeits- und die Temperaturprofile. Weiterhin werden Vergleiche mit fritheren Arbeiten fiir
groBe modifizierte Prandtl-Zahlen angesteilt.

JIOKAJIbHBIE ABTOMOJEJIBHBIE PEIIEHUA 3AJAYU CBOBOAHOKOHBEKTHUBHOIO
TEIUIOTIEPEHOCA OT BEPTMKAJIBHON IUIACTHHBI K HEHBIOTOHOBCKHM
CTEIIEHHBIM XHUAKOCTAM

Amoramus—YUCNCHHO aHAIMIAPYIOTCA NOKANLHEC aBTOMOIC/LHBIE PCIICHHA 3a1aYR JAMHHADHOTO
cBOGOTHOKOHBCKTHBHOIO TCUCHHA HAJ BEPTHKABHONR NNACTHHOR B CTyYae HEHLIOTOROBCKHX CTCNICHHBIX
XHIXOCTCH OpH MOCTOAHHBIX TEMIIEPATYPE CTEHKH H TEILIOBOM NMOTOKE HA MOBEPXHOCTA. CHauana onpe-
HENMIOUINE YPABHEHAS NOTPAHMYHOTO CJIOS BMECTE ¢ IPAHHYMLIMH YCJIOBHAMH IPMBOANTCR k Geapas-
MepHo# Gopme npr nomMonm mpeolpa3oBaHuA NCeBRONONO6HS, @ 3aTCM MOMMCHHAS CHCTCMA YPaBHEHMH
pelIaeTCR KOHEYHO-DAIHOCTHRIM METOAOM B KoMGuHaimu ¢ xyGudecxolf crutalinosolt yHTepnonsumet,
HMony4ens: pesyasTaTel AN CITy9acs MOARGAIMPOBAHHEIX tHcen TIPaHATIA HA OCHOBE JIOKANBHOIO 3Ha-
ueHHR X, pasHoro 1, 10, 100 1 1000, B mEpOKXOM OHANa30HE 3HAYCHHA HHACKCA TCYCHHA XAAKOCTH 0,5
L,5. IpeacTaBrenn XxapaxTepHbie JIOKaIbHbIE B Cpeance wcaa HyccensTa, a Taxxe npodum cxopocT
H TemuepaTypsl. IlpoBencHEl CpaBHEHHA ¢ paHee omyGanKkoBaHHKME paGoTaMu Ans CirydaeB GOMbIMEX
: 3navcHn! MoxpdAUMpoBaHHLIX YHcen MTpauaras.



